

A New Computational Model for Human Reasoning

Steffen Hölldobler International Center for Computational Logic Technische Universität Dresden Germany

- The Suppression Task
- The New Computational Model
- Weak Completion Semantics
- Abduction
- Well-Founded Semantics
- Discussion

"Logic is everywhere ..."

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

The Suppression Task – Part I

 Byrne: Suppressing Valid Inferences with Conditionals. Cognition 31, 61-83: 1989

Conditionals

- LE If she has an essay to write then she will study late in the library.
- LT If she has a textbook to read then she will study late in the library.
- LO If the library stays open then she will study late in the library.
- Facts E She has an essay to write.
 - **¬E** She does not have an essay to write.
- ► Will she study late in the library? □ yes □ no □ I don't know

Conditionals	Facts	Yes	No	Don't Know
LE	E	96%		
LE & LT	E	96%		
LE & LO	E	38%		
LE	¬Ε		46%	
LE & LT	¬Ε		4%	
LE & LO	¬Ε		63%	

The Suppression Task – Part II

- Conditionals
 - LE If she has an essay to write then she will study late in the library.
 - LT If she has a textbook to read then she will study late in the library.
 - LO If the library stays open then she will study late in the library.
- Facts L She will study late in the library.
 - ¬L She will not study late in the library.
- ► Has she an essay to write? □ yes □ no □ I don't know

Conditionals	Facts	Yes	No	Don't Know
LE	L	53%		
LE & LT	L	16%		
LE & LO	L	55%		
LE	¬L		69%	
LE & LT	¬L		69%	
LE & LO	¬L		44%	

Classical logic is inadequate!

A New Computational Model – Prelude

Can we find a logic which adequately models human reasoning?

 Stenning, van Lambalgen: Human Reasoning and Cognititve Science. MIT Press: 2008

Main ideas

Technical flaws

H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics. In: Logic Programming. Hill, Warren (eds), LNCS 5649, 464-478: 2009

Adapted main ideas

Rigorous proofs

The New Approach

- Reasoning towards an appropriate logical form
 - Logic programs
- Weak completion semantics
 - Non-monotonicity
- Three-valued Łukasiewicz logic
 - Least models
- An appropriate semantic operator
 - Least fixed points are least models
 - Least fixed points can be computed by iterating the operator
- Reasoning with respect to the least models
- Abduction and sceptical reasoning
- A connectionist realization

Logic Programs

Preliminaries

- > An atom is an atomic propositions.
- > A literal is either an atom or its negation.
- \triangleright \top and \perp denote truth and falsehood, respectively.
- ► A (logic) program is a finite set of rules.
 - ▶ A rule is an expression of the form $A \leftarrow B_1 \land \cdots \land B_n$, where $n \ge 1$, A is an atom, and each B_i , $1 \le i \le n$, is either a literal, \top or \bot .
 - ▷ A is called head and $B_1 \land \cdots \land B_n$ body of the rule.
 - ▷ Rules of the form $A \leftarrow \top$ are called positive facts.
 - ▷ Rules of the form $A \leftarrow \bot$ are called negative facts.

Reasoning Towards an Appropriate Logical Form

Stenning, van Lambalgen 2008

Represent conditionals as licences for implications

LE & E $\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, e \leftarrow \top\}$ LE & LT & E $\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, \ell \leftarrow t \land \neg ab_2, ab_2 \leftarrow \bot, e \leftarrow \top\}$ > Reason about additional premises

 $\mathsf{LE} \& \mathsf{LO} \& \mathsf{E} \quad \{\ell \leftarrow e \land \neg ab_1, \ ab_1 \leftarrow \neg o, \ \ell \leftarrow o \land \neg ab_2, \ ab_2 \leftarrow \neg e, \ e \leftarrow \top \}$

Weak Completion

Let P be a program. Consider the following transformation:

- 1 All rules with the same head $A \leftarrow Body_1, A \leftarrow Body_2, \ldots$ are replaced by $A \leftarrow Body_1 \lor Body_2 \lor \ldots$
- **2** If an atom A is not the head of any rule in \mathcal{P} then add $A \leftarrow \bot$.
- 3 All occurrences of \leftarrow are replaced by \leftrightarrow .
 - **b** The resulting set is called completion of \mathcal{P} or c \mathcal{P} .
 - If step 2 is omitted then the resulting set is called weak completion of P or wc P.
- Completion versus weak completion
 - $\triangleright c \{p \leftarrow q\} = \{p \leftrightarrow q, q \leftrightarrow \bot\} \neq \{p \leftrightarrow q\} = wc \{p \leftarrow q\}$ $\triangleright c \{p \leftarrow q\} = wc \{p \leftarrow q, q \leftarrow \bot\}$

Three-Valued Interpretations (1)

- A (three-valued) interpretation assigns to each formula a value from {⊤, ⊥, U}. It is represented by ⟨*I*[⊤], *I*[⊥]⟩, where
 - ▷ I^{\top} contains all atoms which are mapped to \top ,
 - ▷ I^{\perp} contains all atoms which are mapped to \perp ,
 - $\triangleright I^{\top} \cap I^{\perp} = \emptyset.$
 - ▷ All atoms which occur neither in I^{\top} nor I^{\perp} are mapped to U.
- Łukasiewicz: O logice trójwartościowej. Ruch Filozoficzny 5, 169-171: 1920

$$\mathsf{U} \leftarrow_{\mathsf{3k}} \mathsf{U} = \top$$

Kleene: Introduction to Metamathematics. North-Holland: 1962

$$\mathsf{U} \leftarrow_{\mathsf{3K}} \mathsf{U} = \mathsf{U}$$

Three-Valued Interpretations

▶ Let *I* denote the set of all three-valued interpretations.

Knowledge ordering

 $\triangleright \ \langle I^{\top}, I^{\perp} \rangle \preceq \langle J^{\top}, J^{\perp} \rangle \quad \text{iff} \quad I^{\top} \subseteq J^{\top} \text{ and } I^{\perp} \subseteq J^{\perp}$

Fitting: A Kripke-Kleene Semantics for Logic Programs. Journal of Logic Programming 2, 295-312: 1985

▷ (\mathcal{I}, \preceq) is a complete semi-lattice.

$$\blacktriangleright \ \langle I^{\top}, I^{\perp} \rangle \cap \langle J^{\top}, J^{\perp} \rangle = \langle I^{\top} \cap J^{\top}, I^{\perp} \cap J^{\perp} \rangle$$

Logic Programs under Weak Completion Semantics (WCS)

H., Kencana Ramli 2009

- ► The model intersection property holds for each program P, i.e., ∩{I | I ⊨_{3Ł} P} ⊨_{3Ł} P.
- This does not hold under Kleene semantics:

$$\begin{array}{ll} \langle \{p,q\},\emptyset\rangle & \models_{3\mathsf{K}} & \{p\leftarrow q\} \\ \langle \emptyset,\{p,q\}\rangle & \models_{3\mathsf{K}} & \{p\leftarrow q\} \end{array} \text{ but } \langle \emptyset,\emptyset\rangle \not\models_{3\mathsf{K}} \{p\leftarrow q\} \end{array}$$

- ▶ The model intersection property extends to weakly completed programs.
- Each weakly completed program has a least model.
- WCS = weak completion + three-valued Łukasiewicz logic
 - > WCS adequately models part I of the suppression task.

Computing the Least Models of Weakly Completed Programs

- ▶ How can we compute the least models of weakly completed programs?
- Stenning, van Lambalgen 2008 Consider the following immediate consequence operator: Φ_P(I) = ⟨J^T, J[⊥]⟩, where

$$\begin{array}{lll} J^{\top} &=& \{A \mid \text{there exists } A \leftarrow \textit{Body} \in \mathcal{P} \text{ with } \textit{I}(\textit{Body}) = \top \} \text{ and } \\ J^{\bot} &=& \{A \mid \text{there exists } A \leftarrow \textit{Body} \in \mathcal{P} \text{ and} \\ & \text{ for all } A \leftarrow \textit{Body} \in \mathcal{P} \text{ we find } \textit{I}(\textit{Body}) = \bot \}. \end{array}$$

- Note $\Phi_{\mathcal{P}}$ 'without the red condition' is the Fitting operator (Fitting 1985).
- Theorem (H., Kencana Ramli 2009)
 - (1) $\Phi_{\mathcal{P}}$ is monotone on (\mathcal{I}, \subseteq) .
 - (2) $\Phi_{\mathcal{P}}$ is continuous

and, hence, admits a least fixed point denoted by Ifp $\Phi_{\mathcal{P}}$.

- (3) Ifp Φ_P can be computed by iterating Φ_P on (Ø, Ø).
- (4) $\operatorname{Im}_{3k} \operatorname{wc} \mathcal{P} = \operatorname{Ifp} \Phi_{\mathcal{P}}.$

A Connectionist Realization – Some History

► Towell, Shavlik: Extracting Refined Rules from Knowledge–Based Neural Networks. Machine Learning 131, 71-101: 1993

▶ Feedforward networks for hierarchical logic programs.

- H., Kalinke: Towards a New Massively Parallel Computational Model for Logic Programming In: Proceedings of the ECAI94 Workshop on Combining Symbolic and Connectionist Processing, 68-77: 1994
 - > Feedforward networks for the immediate consequent operator.
 - ▶ Additional recurrent connections to compute least fixed points.
- Kalinke: Ein massiv paralleles Berechnungsmodell f
 ür normale logische Programme, TU Dresden, Fakultät Informatik: 1994
 - Extension to three-valued programs under Kleene semantics.

CORE Method connectionist model generation using recurrent networks with feedforward core

Networks for Three-Valued Logic Programs

- ▶ Remember $c \{p \leftarrow q\} = \{p \leftrightarrow q, q \leftarrow \bot\}$ and $wc \{p \leftarrow q\} = \{p \leftrightarrow q\}$.
- A translation algorithm translates programs into feedforward network.
- Recurrent connections connect the output to the input layer.

Kalinke 1994

Φp

A CORE Method for the Suppression Task

- H., Kencana Ramli: Logics and Networks for Human Reasoning.
 In: Artificial Neural Networks, Alippi et.al. eds., LNCS 5769, 85-94: 2009
 - ▷ For each program \mathcal{P} there exists a feed-forward core computing $\Phi_{\mathcal{P}}$.
 - ▷ The recurrent network reaches a stable state representing Ifp $\Phi_{\mathcal{P}}$ if initialized with $\langle \emptyset, \emptyset \rangle$.

The Suppression Task – Modus Ponens

LE & E

$$\blacktriangleright \mathcal{P} = \{\ell \leftarrow e \land \neg ab_1, \ e \leftarrow \top, \ ab_1 \leftarrow \bot\}$$

 $\blacktriangleright \text{ Ifp } \Phi_{\mathcal{P}} = \text{Im}_{3\texttt{L}} \text{ wc } \mathcal{P} = \langle \{\ell, e\}, \{ab_1\} \rangle$

From $\langle \{\ell, e\}, \{ab\} \rangle$ follows that she will study late in the library.

Abduction

🕨 LE & LT & L

 $\begin{array}{ll} \mbox{Knowledge base} & \{\ell \leftarrow e \land \neg ab_1, \ ab_1 \leftarrow \bot, \ \ell \leftarrow t \land \neg ab_2, \ ab_2 \leftarrow \bot\} \\ & \mbox{Observation} & \{\ell\} \\ & \mbox{Abducibles} & \{e \leftarrow \top, \ e \leftarrow \bot, \ t \leftarrow \top, \ t \leftarrow \bot\} \\ \mbox{Minimal explanations} & \{e \leftarrow \top\} \ \mbox{and} \ \{t \leftarrow \top\} \end{array}$

- ▶ Reasoning credulously we conclude *e*.
- ▷ Reasoning sceptically we cannot conclude *e*.
- ▶ Byrne 1989 only 16% conclude e.
- ▶ WCS + sceptical abduction adequately models part II of the suppression task.
- H., Philipp, Wernhard: An Abductive Model for Human Reasoning.
 In: Proceedings of the 10th International Symposium on Logical Formalizations of Commonsense Reasoning (CommonSense): 2011
- Dietz, H., Ragni: A Computational Logic Approach to the Suppression Task. In: Proceedings of the 34th Annual Conference of the Cognitive Science Society, Miyake et.al. eds., 1500-1505: 2012

Weak Completion versus Well-Founded Semantics (1)

- Dietz, H., Wernhard: Modeling the Suppression Task under Weak Completion and Well-Founded Semantics: Journal of Applied Non-Classical Logics (to appear)
 - A program is tight if it does not contain positive cycles.
 - > All programs for the suppression (and the selection) task are tight.
 - \triangleright Let \mathcal{P} be a tight program and *I* an interpretation.
 - **> Theorem** The following statements are equivalent:
 - \blacktriangleright *I* is a least model of the weak completion of \mathcal{P} .
 - I is a well-founded model of P', where P' is obtained from P by deleting all negative facts and adding for each undefined predicate symbol A occurring in P the rules A ← ¬A' and A' ← ¬A, where A' is a new symbol.
- ► Well-founded semantics (WFS) appears to be adequate if conditionals do not contain positive cycles!

Weak Completion versus Well-Founded Semantics (2)

- How do humans reason with positive cycles?
 - ▶ If they open the window, then they open the window.
 - If they open the window, then it is cold.
 If it is cold, then they wear their jackets.
 If they wear their jackets, then they open the windows.
- Psychological study
 - We presented conditionals with positive cycles of length one, two and three, asked whether embedded propositions or their negations are entailed.
 - Preliminary results

length	positive	negative (WFS)	unknown (WCS)	response time
1	75%	0%	25 %	5257 msec
2	60 %	3%	37 %	11516 msec
3	55 %	4%	41 %	11680 msec

- Humans consider positive cycles of length one as facts.
- ▶ The longer the cycles, the more likely is the answer 'unknown'.
- Almost nobody entailed negative propositions.

The Selection Task – Abstract Case

 Wason: Reasoning about a Rule. The Quarterly Journal of Experimental Psychology 20, 273-281: 1968

▶ Consider cards which have a letter on one side and a number on the other side.

Consider the rule:

if there is a D on one side, then there is a 3 on the other side.

Which cards do you have to turn in order to show that the rule holds?

▷ Only 10% of the subjects give the logically correct solutions.

An Analysis

- Almost everyone (89%) correctly selects D.
 - ▷ Corresponds to modus ponens in classical logic.
- Almost everyone (84%) correctly does not select F.
 - Because the condition does not mention F.
- Many (62%) incorrectly select 3.
 - ▶ If there is a 3 on one side, then there is a D on the other side.
 - Converse of the given conditional.
- Only a small percentage of subjects (25%) correctly selects 7.
 - ▶ If the number on one side is not 3, then the letter on the other side is not D.
 - Contrapositive of the given conditional.

The Selection Task – Social Case

- Griggs, Cox: The elusive thematic materials effect in the Wason selection task. British Journal of Psychology 73, 407-420: 1982
- Consider cards which have a person's age on the one side and a drink on the other side.

Consider the rule:

If a person is drinking beer, then the person must be over 19 years of age.

- Which cards do you have to turn in order to show that the rule holds?
 - Most people solve this variant correctly.

Formalizing the Social Case

- The conditional is viewed as a social constraint.
- Let o and a be propositional variables denoting that the person is older than 19 years and is drinking alcohol, respectively.
- ▶ The rule is encoded by $C = \{o \leftarrow a \land \neg ab\}.$
- Consider the four cases:

case	\mathcal{P}	$Im_{3\mathtt{k}}wc\mathcal{P}$				
beer	$\{a \leftarrow \top, ab \leftarrow \bot\}$	$\langle \{ {m a} \}, \{ {m a} {m b} \} angle$	⊭3Ł	С	\sim	check
22yrs	$\{o \leftarrow \top, ab \leftarrow \bot\}$	$\langle \{ m{o} \}, \{ m{a} m{b} \} angle$	⊨₃Ł	\mathcal{C}	$\sim \rightarrow$	no check
coke	$\{a \leftarrow \bot, ab \leftarrow \bot\}$	$\langle \emptyset, \{ \pmb{a}, \pmb{ab} \} angle$	⊨3Ł	\mathcal{C}	\sim	no check
16yrs	$\{o \leftarrow \bot, ab \leftarrow \bot\}$	$\langle \emptyset, \{ oldsymbol{o}, oldsymbol{a} b \} angle$	⊭sŁ	\mathcal{C}	$\sim \rightarrow$	check

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Formalizing the Abstract Case

- The conditional is viewed as a belief.
- ▶ Let *D*, *F*, 3, 7 be propositional variables denoting that the corresponding symbol is on one side.
- ▶ Consider $\mathcal{P} = \{3 \leftarrow D \land \neg ab, ab \leftarrow \bot\}$ with Im_{3L} wc $\mathcal{P} = \langle \emptyset, \{ab\} \rangle$.
- \triangleright $\langle \emptyset, \{ab\} \rangle$ does not explain any letter on a card.
- ▶ The set of abducibles is $\{D \leftarrow \top, D \leftarrow \bot, F \leftarrow \top, F \leftarrow \bot, 7 \leftarrow \top, 7 \leftarrow \bot\}$.
- Consider the four cases:

O	ε	$Im_{3tok L}wc(\mathcal{P}\cup\mathcal{E})$		
D	$\{ D \leftarrow \top \}$	$\langle \{ D, 3 \}, \{ ab \} angle$	\rightsquigarrow	turn,
F	$\{F \leftarrow \top\}$	$\langle \{ \textit{F} \}, \{ \textit{ab} \} angle$	\sim	no turn,
3	$\{ D \leftarrow \top \}$	$\langle \{D,3\}, \{ab\} angle$	\sim	turn,
7	$\{7 \leftarrow \top\}$	$\langle \{7\}, \{ab\} angle$	\rightsquigarrow	no turn.

A Computational Logic Approach to the Selection Task

- The computational logic approach to model human reasoning can be extended to adequately handle the selection task
 - ▷ if the social case is understood as a social constraint and
 - ▷ if the abstract case is understood as a belief.
- Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press 2011
- Dietz, H., Ragni: A Computational Logic Approach to the Abstract and the Social Case of the Selection Task. In: Proceedings of the 11th International Symposium on Logic Formalizations of Commonsense Reasoning: 2013

Contraction Mappings

- Banach: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae 3, 133-181: 1922
 - ▷ A contraction *f* on a complete metric space (\mathcal{X}, d) has a unique fixed point; the sequence $x, f(x), f(f(x)), \ldots$ converges to this fixed point for any $x \in \mathcal{X}$.
- A level mapping is a mapping |·| from the set of atoms to N. It is extended to literals by defining |¬A| = |A| for each atom A.
- Let \mathcal{I} be the set of all interpretations and $I, J \in \mathcal{I}$.

 $d_{|\cdot|}(I,J) = \begin{cases} \frac{1}{2^n} & \text{if } I \neq J, \\ & \text{for all } A \text{ with } |A| < n : I(A) = J(A) \neq U, \text{ and} \\ & \text{for some } A \text{ with } |A| = n : I(A) \neq J(A) \text{ or } I(A) = J(A) = U, \\ 0 & \text{otherwise.} \end{cases}$

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Contraction Mappings and Human Reasoning

- H., Kencana-Ramli: Contraction Properties of a Semantic Operator for Human Reasoning. In: Proceedings of the Fifth International Conference on Information, Li and Yen (eds.), 228-231: 2009
 - ▷ $(\mathcal{I}, \mathbf{d}_{|.|})$ is a complete metric space.
 - ▷ If \mathcal{P} is acyclic then $\Phi_{\mathcal{P}}$ is a contraction.
- ▶ All programs for the suppression and the selection task are acyclic.
 - ▷ Computation of the least models can start with an arbitrary interpretation.

Discussion

- Logic appears to be adequate for human reasoning if
 - weak completion semantics,
 - Łukasiewicz logic,
 - the Stenning and van Lambalgen semantic operator, and
 - sceptical abduction are used.
- Human reasoning is modeled by
 - ▶ reasoning towards an appropriate logic program and, thereafter,
 - ▶ reasoning with respect to the least model of its weak completion.
- ▶ This approach matches data from studies in human reasoning.
- ▶ There is a connectionist encoding.
- There are many interesting and challenging open questions.

Some Open Problems (1)

Negation

How is negation treated in human reasoning?

Errors

How can frequently made errors be explained in the proposed approach?

Łukasiezicz logic

Is the Łukasiezicz logic adequate?

► Completion

Under which conditions is human reasoning adequately modeled by completion and/or weak completion?

Some Open Problems (2)

Contractions

Do humans exhibit a behavior which can be adequately modeled by contractional semantic operators?

Explanations

- Do humans consider minimal explanations?
- In which order are (minimal) explanations generated by humans if there are several?
- Does attention play a role in the selection of (minimal) explanations?

Reasoning

- Do humans reason sceptically or credulously?
- How does a connectionist realization of sceptical reasoning looks like?

